Theoretical bases of physics of functioning of proteins

Lectures: 24 hours

Practical work: 10 hours

Work out of educational audience: 34 hours

2 master course (3 term)
2 master course (4 term)
Academics: 
Course program: 

1. FORMATION, COMPOSITION AND STRUCTURE OF PROTEINS.
1.1. COMPOSITION OF PROTEINS. AMINO ACIDS AND IMINO ACIDS PROLINE.
1.2. FORMATION OF PROTEINS. THE PRIMARY STRUCTURE.
1.3. SECONDARY STRUCTURE OF PROTEINS.
1.4. TERTIARY AND QUATERNARY STRUCTURE.
1.4.1. Influence of primary structure on tertiary and quaternary.
1.4.2. Problems associated with the degree of reflection of meaningfulness and physical properties of amino acids and proline in the genetic code.
1.4.3. Myoglobin, hemoglobin and principle of functioning of enzymes.
1.4.4. Proteins of membranes and muscles.
1.5. PROTEINS ENERGY AND PRINCIPLES OF THEIR FUNCTIONING.

2. CONFORMATIONAL EXCITATION OF PROTEIN MOLECULES.
2.1. HYDROLYSIS OF ATP AND EXCITEMENT AMIDE-1.
2.2. ENERGY OPERATOR OF INTRAMOLECULAR EXCITATIONS OF PROTEINS.
2.3. THE AMIDE-1 EXCITATION IN CLASSIC MODEL OF ALPHA-SPIRAL PROTEIN’S FRAGMENT.
2.4. CONFORMATIONAL REACTION OF ALPHA-SPIRAL FRAGMENT OF PROTEIN MOLECULE ON EXCITATION.
2.5. BASE RELATIONS FOR EXACT DESCRIPTION OF GEOMETRY OF ALPHA-SPIRAL.

3. ELECTRONIC ENERGY STRUCTURE OF PROTEINS SUBSYSTEM
3.1. NITROGEN-OXYGEN MODEL
3.2. ANALYSIS OF THE PROBLEM OF NUCLEOTIDE ENCODING OF AMINO ACIDS FROM POINT OF PHYSICAL PROPERTIES OF PROTEINS.
3.3. OPERATOR OF ENERGY OF ELECTRONIC SUBSYSTEM OF PROTEINS IN NITRIC-OXYGEN MODEL: CO-ORDINATE REPRESENTATION.
3.4. OPERATOR OF ENERGY OF ELECTRONIC SUBSYSTEM OF PROTEINS IN NITRIC-OXYGEN MODEL: PRESENTATION OF NUMBERS OF FILLING. ELECTRON INJECTION.
3.5. INFLUENCE OF EXTERNAL FIELDS.
3.6. SOME QUICK ESTIMATES FOR MATRIX ELEMENTS.
3.7. STATES OF CONDUCTIVITY OF PROTEIN MOLECULES.
3.8. METHODS OF CALCULATING THE CURRENT.
3.8.1. The dispersion method for determining the density of current.
3.8.2. "Direct" method of determining the density of current.

Knowledge tests: 

Credit

Literature: 

Main

1. А. Д. Супрун, Ю. І. Прилуцький. Основи теорії білкових молекул. К.: РВЦ “Київський університет”. 2003.
2. А. Д. Супрун. Квантова теорія конформаційних збуджень білкових молекул. К.: РВЦ “Київський університет”. 2005.
3. А. С. Давыдов. Теория молекулярных экситонов. М.: Наука. 1968.
4. А. С. Давыдов. Биология и квантовая механика. К.: Наукова думка. 1979.
5. Э. Г. Петров. Физика переноса заряда в биосистемах. К.: Наукова думка. 1984.

Additional

6. А. С. Давыдов. Солитоны в молекулярных системах. К.: Наукова думка. 1984, 1988.
7. М. В. Волькенштейн. Физика ферментов. М.: Наука. 1967.
8. Дж. Бендолл. Мышцы, молекулы и движение. М.: Мир. 1970.
9. В. М. Степанов. Молекулярная биология. Структуры и функции белков. М.: Высшая Школа. 1996.
10. Д. С. Чернавский, Н. М. Чернавская. Белок – машина. Биологические макромолекулярные конструкции. М.: Изд-во МГУ. 1999.
11. А. Б. Рубин. Биофизика. Т. 1. М.: Книжный дом "Университет". 1999.